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Most agricultural robots, fruit harvesting systems in particular, use computer vision to

detect their fruit targets. Exploiting the uniqueness of fruit colour amidst the foliage,

almost all of these computer vision systems rely on colour features to identify the fruit in

the image. However, often the colour of fruit cannot be discriminated from its background,

especially under unstable illumination conditions, thus rendering the detection and seg-

mentation of the target highly sensitive or unfeasible in colour space. While multispectral

signals, especially those outside the visible spectrum, may alleviate this difficulty, simpler,

cheaper, and more accessible solutions are desired. Here exploiting both RGB and range

data to analyse shape-related features of objects both in the image plane and 3D space is

proposed. In particular, 3D surface normal features, 3D plane-reflective symmetry, and

image plane highlights from elliptic surface points are combined to provide shape-based

detection of fruits in 3D space regardless of their colour. Results are shown using a

particularly challenging sweet pepper dataset with a significant degree of occlusions.

© 2016 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Amajor and challenging task of agricultural robotic systems is

that of detecting and localising fruit. Systems designed to

count or harvest fruit require an accurate detection scheme

that is able to overcome challenges such as naturally occur-

ring changes in illumination, shape, pose, colour, and view-

point. All these factors are prevalent in natural environments,

making target detection in agricultural settings particularly

challenging.
.
(O. Ben-Shahar).
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Colour is often a distinctive and indicative cue for the

present of fruit. Indeed, fruits are frequently red (sweet pep-

pers, strawberries, etc...), orange (oranges, persimmons, etc...),

or yellow (bananas, sweet peppers, etc...), and thus they stand

out from the green foliage. In such conditions, their presence

is easily identified in images by simple colour processing, as

indeed practiced in an overwhelming majority of agricultural

vision (agrovision) methods (Kapach, Barnea, Mairon, Edan, &

Ben-Shahar, 2012). Obviously, in certain cases the use of

colour introduces high degree of uncertainty. Some fruits are

simply green (certain apples, sweet peppers, cucumbers, etc...)
.
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Nomenclature

S Saturation

V Luminance

I Input image

Ix,Iy Partial derivatives of I

Ci the i-th circle in a group of concentric circles

ri Radius of circle Ci

Ci(p) The set of all pixel locations at radius ri from p

oj The j-th orientation value at a location among

Ci(p)

ej The j-th expected orientation value at a

location among Ci(p).

W Spatial neighbourhood

SW(p) The second moment matrix approximation of

neighbourhood W of p

w(r) Weight associated with r

Gs Gaussian kernel with variance s

l1, l2 Eigenvector of matrix SW(p), where l1 > l2

S(Ci) Percentage of computed and expected

orientations at Ci(p) that agree

Th Accumulated support threshold

Ta Similarity threshold

Ts Agreement threshold

nx Surface normal at point x

q, f Angles representing a vector

pv Viewpoint

np Normal of symmetry plane

Abbreviation

HSV Hue Saturation Value

HoG Histogram of Orientation Gradients

SVM Support Vector Machine
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and thus they are hardly distinguishable from the foliage on

the basis of colour alone (see Fig. 1a). Moreover, illumination

may not be good enough to render colour differences between

fruit and background or too unreliable to allow robust detec-

tion even for non-green fruits (see Fig. 1b). Following these

observations, the focus of this work is a fruit detection

framework that is completely agnostic of colour and thus able

to cope with such challenges. The two cues that we propose to

exploit are depth (or shape) and highlights.
Fig. 1 e Example of agricultural images where colour cannot as

distinctive coloured fruit (left) becomes more similar to the surr

(right).
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The recent advances in the research and development of

range sensors and depth cameras have made depth infor-

mation of scenes (both indoors and outdoors) readily available

in the form of RGB-D images or 3D point clouds. Depth mo-

dality, which is inherently different than colour and intensity,

has lately been employed to solve many kinds of general

computer vision problems, such as object recognition (e.g.,

Lai, Bo, Ren, and Fox (2011)), object detection (e.g.,

Hinterstoisser et al., 2011; Spinello & Arras, 2011, pose esti-

mation (e.g., Shotton et al., 2013); Aldoma et al., 2011) and

segmentation (e.g., Silberman & Fergus, 2011).

Seeking to improve agricultural robots, RGB-D images were

also used to detect several types of fruit (Chi & Ling, 2004;

Edan, Rogozin, Flash, & Miles, 2000; Hannan & Burks, 2004).

Indeed, the depth modality becomes particularly useful in

agricultural applications as it makes the shape and the ge-

ometry of visible objects explicit with relatively little sensi-

tivity to illumination conditions (Harrell, Slaughter, & Adsit,

1989). Furthermore, when fruit colour is similar to the sur-

rounding foliage, shape becomes a more prominent cue to-

ward separating the two.

Another visual cue that is independent of colour is high-

lights. Highlights tend to appear more often on the smoother,

more specular, and typically elliptical (in the sense of differ-

ential geometry, see Do Carmo&Do Carmo, 1976) fruit regions

(compared to the foliage) in places where the surface normal

bisects the angle between illumination and viewing di-

rections. While not categorical, the presence of highlights

thus increases the probability that the image region from

which they reflect belongs to a fruit. The challenge, of course,

is to properly find such highlights and discriminate them from

other bright image regions or highlights that originate from

other non-fruit entities within the image.

Combining both highlight detection and 3D shape/range

data, and inspired by recent advancements in general com-

puter vision and previously suggested fruit detection systems

(Kapach et al., 2012), here a colour-agnostic fruit detection

framework composing of two steps is proposed: a rapid

highlight-based candidate generation step, followed by a

costlier 3D shape-based detection step.

In the first step, regions that are likely to contain fruit are

found by detecting intensity highlight signatures in the image.

In the second step, the likely regions are processed with a

depth-based object detector that is partially invariant to

changes in pose (Barnea & Ben-Shahar, 2014). In order to
sist in detection. (a) Green fruit amidst green foliage. (b) A

ounding foliage under different illumination conditions
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account for the different poses in which a fruit may appear,

the detector processes each image region by first finding the

best 3D symmetry reflection plane (assuming that the region

contains a fruit), and then accumulating local shape features

(i.e., surface normals) relative to a 3D frame defined using the

detected symmetry.

Accumulated features are then classified using existing

machine learning methods. The generalisation power of the

learning scheme then permits not only certain robustness

over shape variations, but also for occlusions.

In what follows, we provide a survey of relevant literature

(Section 2), an elaboration on the detection framework (Sec-

tion 3), an evaluation of our method on a challenging bell-

pepper dataset (Section 4), and finally, we discuss our con-

clusions and future work (Section 5).
2. Background

Object detection in colour images has been a subject of

research for many years. Instead of covering it here again we

refer the reader to a recent review of the literature by Kapach

et al. (2012), or the earlier review by Jimenez, Ceres, and Pons

(2000a). The different subsections that follow discuss back-

ground material related to the use of range data, visual high-

lights, and symmetry, to provide the background relevant to

the approach presented later.

2.1. Detection of fruit and general object categories in
depth images

With the introduction of depth data to agrovision, new op-

portunities as well as challenges emerge, particularly how to

properly use depth data, or how it may be used in conjunction

with RGB data. Jimenez, Ceres, and Pons (2000b), for example,

exploited the spherical shape of oranges by looking for and

aggregating a set of local primitives that are likely to belong to

spherical objects. However, the more common approach of

exploiting RGB-D data in agrovision is the case of RGB followed

by depth analysis. Specifically, the colour of fruits is used to

segment the region of interest (usually of a cluster of fruits)

from the RGB image, and the registered depth map is then

used on the segmented parts to localise fruits in space. For

example, Monta and Namba (2003) used this cascade for the

detection of tomatoes, where depth data was also used to

distinguish individual fruits that are part of a single colour

segment. Fruit candidate regions were generated by thresh-

olding the colour channels, and separating single fruits by

examining and thresholding the spatial distance between

adjacent pixels in the candidate regions. Needless to say that

in all systems of that type, the colour of the fruit is highly

discriminative and easily detected and that all processing,

both in the colour and the depth domains, is highly fruit-

dependent.

Clearly, ways of using range or RGB-D data also arise

outside agrovision in the general computer vision literature,

and ideas that presently develop in the latter can serve the

former as well. Recently, a baseline study by Janoch et al.

(2011) employed the popular part-based detector by

Felzenszwalb, McAllester, and Ramanan (2008) for object
Please cite this article in press as: Barnea, E., et al., Colour-agnostic sha
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detection based on a variant of the HoG algorithm (Dalal &

Triggs, 2005). These algorithms employ the sliding window

approach, in which every window in the scene is represented

as a point in high dimensional space by computing a set of

features for the data inside the window. Machine learning

classifiers then learn to classify a window as containing an

object or not by finding a function that separates the high

dimensional feature space into a part containing mostly

windows with objects and another part containing mostly

windows without objects. In the study by Janoch et al. (2011),

the sliding window approach was combined with a repre-

sentation based on histograms of edge orientations, but

applied it directly on depth images as if they were intensity/

colour images. Perhaps expectedly, this yielded inferior per-

formance, suggesting that depth should not be treated as if it

was intensity or colour. Borrowing these insights, Tang et al.

(2012) also used the HoG formulation but with histograms of

surface normals that are characterised by two spherical angles.

These features have been shown to produce better results

than those obtained by the HoG algorithm over intensity/

colour images and better than HoG over depth images, indi-

cating again that depth should not be treated as intensity. A

different approach to the analysis of depth information at-

tempts to facilitate prior segmentation (Bo, Lai, Ren, & Fox,

2011; Redondo-Cabrera, L�opez-Sastre, Acevedo-Rodriguez, &

Maldonado-Basc�on, 2012). Kim, Xu, and Savarese (2013), for

example, proposed employing such information by generating

a small set of segmentation hypotheses, and then use both

HoG features and depth features from these segmented re-

gions in a part-based model generalised to 3D. Their scheme

resulted in a feature vector containing both appearance and

3D shape features, which gave better results in most cate-

gories. Other ways to use depth information include esti-

mating object size (Janoch et al., 2011; Saenko et al., 2011) and

combining detector responses from different views (Lai, Bo,

Ren, & Fox, 2012).

Regardless of the colour or the depth features employed, an

important issue of object detection is the treatment of object

pose. As is clearly needed for agrovision, a robust object de-

tector would be general enough to capture its sought-after

target (fruit, in the agrovision case) at different poses, and

there are different ways of doing so. The naı̈ve way, as shared

by most object detectors, is to rely on machine-learning

classifiers to be able to generalise diverse training data.

However, machine-learning methods have limitations (like

any other method) and cannot always be expected to gener-

alise well. In order to achieve better results, some researchers

try and provide the learning algorithmwith simpler examples

to learn from. This is done by estimating the object's pose

prior to the classification phase (Lin&Davis, 2008) and using it

to align the object to a canonical pose or to calculate features

in relation to the estimation.

Recapping on the above, current RGB-D algorithms in

agrovision are too specific and fruit-dependent, while general

computer vision algorithms are too general and perform

inferiorly on agricultural data. Here we seek to bridge the two

approaches and seek a general detector that can be success-

fully applied for the detection of fruit. Using both highlights

and symmetry of objects, these aspects are reviewed before

moving on to discuss our main contribution.
pe-based 3D fruit detection for crop harvesting robots, Biosystems
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2.2. Detection of highlights

Theoretically, when a light source illuminates an object in a

visual scene, part of the light is immediately reflected back,

while the remainder infiltrates the object. Of the infiltrating

light, some would pass deeper through the object and some

would reflect back onto its surface and into the air. The light

reflected immediately is called specular, while the light re-

flected after penetrating the object is called diffuse. The former

is typically reflected according to the law of specular reflection

(and more generally, on Snell's law) while the latter may

reflect in many different directions depending on the in-

teractions exhibited inside the material.

The physical properties of the illuminated object deter-

mine the specular and diffuse components of the light re-

flected from it. Many common materials exhibit a mixture of

both components while those that have more specular

reflection are known as glossy or shiny objects. In a two

dimensional projection of a visual scene, at viewing angles in

which the reflection dominates, these reflections often appear

as bright spots of light called specular highlights (Beckmann &

Spizzichino, 1963).
Specular highlights are often regarded as a nuisance for

practical computer vision applications. A main reason lies in

their characteristic high intensity and low saturation values,

which appear as intense white regions in the image of the

scene. Often, these regions hinder image processing algo-

rithms that are based on colour information and decision

thresholds (e.g., segmentation and edge detection). Additional

difficulties rise from the viewpoint dependent appearance of

specular highlights, which interferes with image registration

and subsequent image processing tasks (e.g., stereo matching

and object recognition). Naturally, these properties of specular

highlights have been used in order to remove them from ac-

quired visual data and improve the performance of a wide

range of computational tasks. Several methods used the

viewpoint dependent appearance of highlights in order to

detect them either by acquiring images of the same scene

from multiple views (Lee & Bajcsy, 1992; Lin, Li, Kang, Tong, &

Shum, 2002; Nayar, Fang, & Boult, 1997) or by changing the

light source direction (Lin & Shum, 2001; Park & Tou, 1990;

Sato & Ikeuchi, 1994). These approaches, however, are not

always applicable since they require modifying the general

setting of the scene.

Removal of specular highlights without using visual cues

related to their view dependent appearance (i.e., using a single

image) is more challenging. Several methods rely on an image

of the diffuse component, generated according to a reflection

model and the parameters of the acquisition device (Mallick,

Zickler, Belhumeur, & Kriegman, 2006; Mallick, Zickler,

Kriegman, & Belhumeur, 2005; Shen & Cai, 2009; Tan &

Ikeuchi, 2005b). Other approaches for highlights removal

analyse the distributions of image colours within a colour

space (Tan & Ikeuchi, 2005a; Tan, Quan, & Lin, 2006). These

methods, however, are not capable for real-time applications

and focus on the removal of specular highlights without their

explicit detection.

While their removal may be beneficial to some applica-

tions, specular highlightsmay also be regarded as informative

visual cues. For example, specular highlights were used in
Please cite this article in press as: Barnea, E., et al., Colour-agnostic sh
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order to detect shiny and transparent objects by Osadchy,

Jacobs, and Ramamoorthi (2003) who exploited them as

unique signals to estimate the pose of objects (Netz &

Osadchy, 2011), and in the extreme, when the object was

entirely specular, for the full reconstruction of its geometry

from several (Adato & Ben-Shahar, 2011, Adato, Vasilyev,

Zickler, & Ben-Shahar, 2010) or even one image (Vasilyev,

Zickler, Gortler, & Ben-Shahar, 2011). Indeed, under chal-

lenging viewing conditions, where conventional (e.g., colour,

brightness) features are often unreliable or insufficient for the

detection of visual objects, the unique appearance of specular

reflectionsmay be exploited to detect, characterise andmodel

the objects on which they form. This is relevant for all objects

of some specular characteristic, and clearly true for many

types of fruits. Here the focus is on sweet peppers, but one

could consider many other fruits as well.

Indeed, due to their physical properties, sweet pepper

fruits almost always produce specular reflections of the light

source illuminating them. Considering the abundance of vi-

sual information in the natural cluttered scenes of sweet

pepper fruits, specular highlights can be significant signals

that can be exploited for their detection.

Here a novel method to detect specular highlights with a

specific application to localise sweet pepper fruits (or more

generally any fruit of sufficiently glossy and smooth shape) is

presented. Our method is based on a model of specular high-

lights that exploits a particular relationship between highlights

and image gradients. The model uses no prior knowledge of

lighting direction and requires no calibration. Aswill be shown,

it not only can be computed in real time but it also greatly en-

hances thereliability ofdetectingspecularhighlights compared

with simply relying on their luminance and saturation.

2.3. Detection of symmetry

Symmetry is a phenomenon occurring abundantly in nature.

Extensive research has been carried out trying to detect all

kinds of symmetry in both 2D (e.g., Park et al. 2008) and 3D

(e.g., Mitra, Pauly, Wand, & Ceylan, 2012). Applications for

detecting symmetry are numerous, with special interest in

object detection. Indeed, when searching for objects in a

clutter, symmetry is not only naturally organised perceptually

(Wertheimer, 1923), but is also indicative of natural or man-

made objects (Rosen, 2011). In this work fruit detection is

included in range data with symmetry detection in order to

better discriminate fruit from clutter. The challenge then be-

comes one of detecting symmetry.

Complete symmetry detection (including the detection of

multiple types of symmetry and across multiple objects and

scales in an image) is a difficult problem due to the different

types of symmetry found in nature. For this reason, research

is usually focused on specific symmetries, ranging from rigid

transla tion (Zhao & Quan, 2011) and rigid reflection (Loy &

Eklundh, 2006; Podolak, Shilane, Golovinskiy, Rusinkiewicz,

& Funkhouser, 2006), to non-rigid symmetry (Raviv,

Bronstein, Bronstein, & Kimmel, 2007), reflection relative to

general curves or curved glide-reflection (Lee & Liu, 2012), or a

hierarchy of different symmetries (Thrun & Wegbreit, 2005).

Proposed symmetry detection methods may also be clas-

sified as solving for either partial or global symmetries. While
ape-based 3D fruit detection for crop harvesting robots, Biosystems
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an image containing various symmetric objects is likely to

contain a great deal of local symmetries, the image itself may

not necessarily be globally symmetric. Partial symmetry

detection entails finding the symmetric parts of the image, in

contrast to global symmetry detection in which all of the

image pixels are expected to participate. More formally, global

symmetry, being a special case of partial symmetry (Mitra

et al., 2012), is characterised by a transformation that maps

the entire data to itself, while for partial symmetry a sought-

after transformation maps only a subset of the data to itself.

Occasionally, local symmetries are treated as global symme-

tries after confining the region of interest to local region of the

data.

As a final note, it should be mentioned that as a tool

facilitating object detection and pose localisation symmetry

should be discriminative enough. This is not the case for

completely spherical objects that have infinite number of

symmetry axes and planes. As long as the target deviates from

spherical (as is indeed the case with many fruits, sweet pep-

pers included) the contribution of symmetry increases.
3. Material and methods

With the goal of developing a colour-agnostic detection

scheme, we turn to visual cues other than colour. For this

reason, non-colour information in the image plane is

employed, as well as shape information given directly by a

depth sensor. In the main (and second) part of our algorithm

the entire space is searched for fruit instances, by first

detecting the symmetry plane that best describes the data

around each location, followed by accumulation of shape

features, and the classification of that data with a pre-trained

classifier. While accumulating local features and running a

classifier are considered relatively fast, the detection of sym-

metry is somewhat slower. For this reason, a rapid pruning

stage is incorporated that processes the 2D visual data and

finds locations that are likely to contain fruit based on spec-

ular highlights. The areas in the image that are filtered out by

this first stage are then ignored by the 3D detector, allowing

for faster detection. Both the pruning and the 3D detection

make no assumptions about visibility and thus incorporate

intrinsic capacity to cope with occlusions. In the next three

sections the different parts of our algorithm are described.

The pruning algorithm is based on highlight detection, a

shape-based detector (that assumes an estimation of sym-

metry is available), and a symmetry detection process.

3.1. Highlight detection for data pruning

Specular highlights tend to exhibit high luminance (V) and low

saturation (S) values in digital images. Our highlight detection

begins by generating an initial list of candidate regions based

on the values of these two channels in the hue saturation

value (HSV) representation (Levkowitz, 1997) of the input

image I. More specifically, each pixel x2 I is filtered according

to

fðxÞ ¼
�

1 if Vx=Sx > t
0 otherwise

(1)
Please cite this article in press as: Barnea, E., et al., Colour-agnostic sha
Engineering (2016), http://dx.doi.org/10.1016/j.biosystemseng.2016.01.0
where Vx and Sx are its corresponding luminance and satu-

ration values. This equation classifies a pixel as a possible

candidate (indicated by the value 1) when its luminance to

saturation ratio is larger than a certain threshold value t.

Otherwise, the pixel is classified as a non-candidate (indicated

by the value 0). The parameter t can be determined in a su-

pervised manner and in our experiments it was selected

empirically to be 0.8. Once the input was so binarised, the

algorithm aggregated pixels to connected components which

formed candidate specular regions.

Figure 2 shows the resulting binary representation of

candidate specular regions for a sample scene of sweet pepper

fruit. Already in this example one can notice that high lumi-

nance and low saturation are not exclusive properties of spec-

ular highlights. Therefore, the list of initial candidates did not

indicatehighlights by itself. However, regionsfiltered out by Eq.

(1) were very unlikely to be highlights and thus this preliminary

step served mainly to reduce the computational resources

required for the next computational step, in which specular

highlights were distinguished from among the candidate re-

gions. This computation relied on the approximately isotropic

structure that characterises specular highlights. In particular,

highlights appear to possess a particular distribution of image

gradients that surround a singularity. As can be seen in Fig. 3,

these image gradients tended to organise radially around the

highlight centre, in what may be considered a local pinwheel

(when coded by colour). To find those local pinwheels as more

evidence of theexistence of ahighlight their expected structure

was modelled as a group of concentric circles of increasing

radii, C1, C2, …, Cn. Each circle encoded the expected local

orientation values along its perimeter and thus provides a

multi-scale signature of the orientation at all discrete angles

around the highlight (see Fig. 3). The resultant pattern was the

one that was sought in the gradient map of the input image.

In order to detect local orientation (gradient) patterns a

reliable orientation map was firstly required from the image.

While there are numerous ways of doing so, here the process

of Carson, Thomas, Belongie, Hellerstein, andMalik (1999) was

followed that uses the eigenvectors of the second moment

matrix to produce a two dimensional map encoding the esti-

mated orientation in the range [0, 2p] at each location. More

formally, for a specific pixel, p ¼ (x,y) the second moment

matrix is approximated by

SWðpÞ ¼

2
64

P
r
w½r�ðIx½p� r�Þ2 P

r
w½r�Ix½p� r�iy½p� r�P

r
w½r�Iy½p� r�Ix½p� r� P

r
w½r��Iy½p� r��2

3
75 (2)

where Ix and Iy are the partial derivatives of the intensity

image, r varies over a set of image positions in the spatial

neighbourhood W of p, and w(r) is a weight associated with

each r. In practice, the matrix components for all pixels were

obtained by convolving a Gaussian kernel Gs with each com-

bination of the partial derivatives. The variance s of the kernel

determines the size of the environment W used to integrate

gradients at a specific pixel.

The orientation at p is computed based on the eigenvectors

of the matrix SW(p). These eigenvectors were l1 and l2, where

l1 > l2. The orientation of gradients on the window used to

build the matrix was given by the orientation of l1.
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Fig. 2 e Initial selection of candidate regions based on luminance and saturation. (a) An RGB input image with highlight

appearing on pepper fruit. (b) The luminance (top) and saturation (bottom) channels are extracted from the HSV

representation of the input image. (c) Information from both channels is combined according to Eq. (1) into a map that

encodes the luminance saturation ratio at each location. (d) The ratio map is thresholded to obtain a binary representation

of candidate regions with high luminance-saturation ratio (top). As the binary image indicates, high luminance and low

saturation are not exclusive properties of highlights and non-highlight regions may become candidates as well. From

among the candidates, highlights are distinguished based on their structure and represented in a binary indicator function

(bottom). (e) The centres of mass of the binary indicators are considered as highlightmarkers and are dilated by a predefined

radius to produce the final pruning mask.

Fig. 3 e The signature distribution of orientation gradients around specular highlights. (a) A close-up of a typical highlight.

(b) The typical circular distribution of image gradient in the proximity of the highlight. (c) The same structure, now coded by

colour, is reminiscent of a pinwheel. (d) A multi scale model of the pinwheel used for highlight detection.
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With both the orientation map and the desired pattern

defined, each candidate pixel p was classified by the degree to

which the orientation pattern around it matched that of the

pinwheel. Ci was a circle of radius ri from the set of concentric

circles, C1, C2, …, Cn, that formed our model. For a specific

candidate pixel p, Ci induces the set of all pixel locations Ci(p)

at radius ri from p.

The estimated orientation values computed at locations in

Ci(p) were o1, o2, …, om . Each value oj corresponded with an

expected orientation value ej that is encoded by Ci. In order to

measure the agreement between the two corresponding ori-

entations, the periodicity of orientation values must be

considered: a shorter distance was expected for orientations

that were proximate radially, rather than by orientation value

(e.g., the distance between 0 and 360 should be 0).

To this end, the distance between oj and ej was measured

based on their complex number representations: (cos(oj) þ
i$sin(oj)) and (cos(ej) þ i$sin(ej)) respectively. Thus, the distance

between oj, and ej was computed as follows

d
�
oj; ej

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos oj � cos ej

�2 þ �
sin oj � sin ej

�2q
(3)

With this distance measure, the agreement between the

measured and expected orientations is determined by simi-

larity up to a given threshold

agreement
�
oj; ej

� ¼ �
1 d

�
oj; ej

�
<Ta

0 otherwise
: (4)

Now, each circle Ci was labelled as supporting the hy-

pothesis that p is a highlight by the percentage of corre-

sponding orientations that agree. If that percentage, denoted

S(Ci), was larger than a threshold Ts, then Ci voted positively

(indicated by the value 1). Otherwise, Ci did not support p

(indicated by 0). Formally, this was computed by

supportðCiÞ ¼
�

1 SðCiÞ>Ts

0 otherwise
: (5)

Finally, if the accumulated support fromall circlesC1,C2,…,

Cn, exceeded a certain threshold Th, p was considered as a

highlight pixel. Otherwise, it was classified as a non-highlight

pixel:

highlightðpÞ ¼
(

1
P
i

supportðCiÞ>Th

0 otherwise
: (6)

The result of all these steps was a binary map represen-

tation of detected highlight “markers” on fruits. To conclude,

these markers were transformed into regions where entire

fruits were located. Thus, to produce the final pruning map

the centre of mass of each marker was computed and dilated

by a fixed radius r pixels according to the maximum observ-

able size of fruits in the environment. Note that this can be

easily calibrated for any particular environment using the

minimal viewing distance and maximal expect fruit.
1 Note that a representation based on a symmetry plane is
invariant to pose only partially, since transformations of the ob-
jects that keeps its symmetry plane in tact will no change this
transformation. Thus, ambiguity remains for all changes of pose
induced by rotation of the object about an axis perpendicular to
the symmetry plane.
3.2. Fruit detection in 3D

To conveniently take advantage of the depth data mentioned

in Section 2, the spacewith a fixed-size 3D boxwas scanned by

sliding over the cloud of points supplied by a SwissRanger
Please cite this article in press as: Barnea, E., et al., Colour-agnostic sha
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4000 depth camera by Heptagon (acquired from Mesa Imag-

ing), Rüschlikon, Switzerland. This is done in an efficient

manner, without considering empty parts of space, places

that are too far away from the camera or those containing just

a small batch of nearby points. Needless to say this is carried

out for those parts of the point cloud that correspond to the

image regions that survived the 2D pruning step discussed

above. For each box, the best symmetry plane passing through

the centre of the box was found, and the features were

calculated using the data points inside the box. This was fol-

lowed by a classification of the resultant feature vector using a

support vector machine (SVM) classifier that constructs a

classification hyperplane that maximised the distance be-

tween the hyperplane and closest example data-points in the

high dimensional feature space (Cristianini & Shawe-Taylor,

2000; Chang & Lin, 2011). Since several boxes were usually

classified as containing the same object, nearby detections

were removed using a non-maximum suppression process.

Figure 4 shows this process graphically and the rest of this

section discusses its details.

It is assumed that there is a template plane-symmetric

object that one seeks to find in the point cloud (in our case,

a sweet pepper, but the description is indifferent to the type of

object of interest). The heart of the computation was the cal-

culations performed for every 3D box as it slides and scans the

point cloud. Firstly, the symmetry plane of the data inside the

box was estimated (assuming it indeed contains an object of

interest). This inference is described in the next subsection.

With this plane computed, the shape inside each 3D box was

modelled as a long feature vector relative to the symmetry

plane, thus obtaining a partial pose-invariant representation.1

More specifically, the feature vector was based on histograms

of surface normals that are computed and represented rela-

tive to the estimated symmetry plane.

It was assumed that there was a reference frame whose

origin is the object's centre, and its three orthonormal basis

vectors r, i, np are such that np is the normal of the object's
symmetry plane, and vectors r and i span the symmetry plane

and selected in a particular and consistent way as described

later (see Fig. 5a). Seeking a histogram-based representation of

the shape inside a 3D box, the surface normal for each point

was calculated by fitting a plane to the points in its vicinity

and representing these vectors not in the camera coordinate

system but in the symmetry-based reference frame just

described.

To further leverage the partial pose-invariant power of the

approach these normal vectors were chosen using a some-

what unconventional version of two spherical angles as dis-

cussed below.

Where p is the centre of the box and x be a point in the

point cloud within this box, nx be the surface normal associ-

ated with x and let nx and x is their projections on the sym-

metry plane (p, np), Fig. 5b depicts the first angle in our
pe-based 3D fruit detection for crop harvesting robots, Biosystems
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Fig. 4 e An overview of the 3D detection process of fruit in the point cloud provided by the range camera. (a) A typical point

cloud from the RGB-D sensor and the sliding box positioned around one measurement (in this case, one that contains a

fruit). (b) A close up of the content of the box with the best symmetry plane detected. (c) Features are calculated to represent

the content of the box in the feature space. (d) The training set (red for fruit and blue for non-fruit) is used to construct a

Support Vector Machine (SVM) classifier in feature space, with which the query feature vector is classified, in this case, as a

fruit.
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representation which is denote as q2 [0, p] and defined as the

angle between the surface normal nx and plane normal np:

q ¼ cos�1
�
nx$np

�
: (7)

Figure 5c depicts the second angle 4 2 [0, 2p) in the rep-

resentation, defined as the signed angle between the projected

normal nx and the vector connecting the box centre pwith the

projected point x:

f ¼ cos�1

�
nx

knxk$
p� x
kp� xk

�
: (8)

This was followed by an addition of p depending on the

direction of nx relative to direction vector:
Please cite this article in press as: Barnea, E., et al., Colour-agnostic sh
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direction ¼ np$
p� x
kp� xk : (9)
These two angles provided a representation that depended

only on the estimated symmetry plane. Indeed, both Fig. 5b, c

and the equations above indicate that both q and 4 of each

point can be determined solely by from np, x, and the centre of

the box p.

With a scheme to represent the normal vector of each point

in thecloud in a symmetry plane-dependentway, the following

step is the accumulation of surface normals using histograms.

To do so, the space of a 3D box was divided into several bins,

each of which were represented by a histogram of their own. A
ape-based 3D fruit detection for crop harvesting robots, Biosystems
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Fig. 5 e The representation of point clouds inside the sliding box is done relative to the symmetry plane and the

corresponding reference frame of the points inside it. The first row illustrates the different vectors, angles, and bins used.

The second row provides a colour coded visualisation of these quantities calculated for the synthetic pepper and reference

frame in the left panel. (a) The input for the representation is a set of points inside a box (depicted here as the sweet pepper

object), together with a reference frame induced by the (estimated) object's symmetry plane. (b) The basic representation

unit is the surface normal vector associated with each point in the cloud and computed by fitting a plane to the points in its

vicinity. These vectors are then represented relative to the reference frames, an operation depicted here by rectifying the

frame to an upright position. In particular, all normal vectors are represented by two spherical angles, where q shown here

is the horizontal angle with colour ranging from purple to blue as the angle increases (refer to the text for details). (c) A

depiction of the vertical angle 4 with colour ranging from blue to purple as the angle increases. Note that x and x coincide

from this viewpoint. (d) The spatio-angular bins that divide the box. The colour map depicts how different subsets of points

on the pepper are associated with different bin.
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box was divided into a 2D set of angular bins (Fig. 5d), where

each bin was defined according to two parameters - its

Euclidean distance from the symmetry plane, and angular

distance from the (arbitrarily chosen) basis vector r.

The surface normals of all the points that fall in the same

bin were accumulated in two 1D histograms according to the

two angles described above. All the histograms were nor-

malised and concatenated to form a single feature vector that

was then classified using the C-SVC formulation of SVM with

an RBF-kernel (Chang & Lin, 2011).

To train the SVM classifier the used dataset was split into a

training and a testing set Bishop (2007). In order to generate

false and positive training examples, feature vectors were

computed for boxes containing fruit and boxes that did not

contain fruit (randomly chosen from locations without fruit).

These two classes of feature vectors were then used to train

the classifier.
Fig. 6 e The symmetry plane and reference frame of a

synthetic pepper. The vector np is the normal of the plane

(blue), r points up (green), and i is the cross product of the

two vectors (red).
3.3. 3D plane-reflection symmetry detection

The computational procedure above assumed a symmetry

plane was at hand in order to construct the representation,

the training, and the classification. In practice, this plane
Please cite this article in press as: Barnea, E., et al., Colour-agnostic sha
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should be estimated from the measured data in each box

(Fig. 6).

In fact, taking into account every relevant box in space

greatly simplifies the symmetry plane estimation task. If it
pe-based 3D fruit detection for crop harvesting robots, Biosystems
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Fig. 7 e Symmetry planes and visible symmetric partners. For each of the two cases we show a banana imaged from a

particular point of view (left), estimated symmetry plane (middle, depicted by the intersection of the plane with the banana),

and a colour map of points with (red) and without (blue) symmetric partners. (a) A banana imaged frontally has virtually all

of its points in the range data possess symmetric partners. Note how all points are marked red. (b) A banana imaged

obliquely has the same symmetry plane (now shown rotated, of course) but an important subset of its points has no visible

symmetric partners in the cloud (shown in blue).
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contains a fruit, most points inside the box are likely to belong

to that object, while the number of outliers is usually not too

great; a property that distinguishes range data from intensity/

colour data. More importantly, scanning the entire space,

provided assurance that some box will have a centre point

that coincides with the sought-after symmetry plane. Since a

plane can be represented with a point and a normal, only the

normal remains to be solved for. Be that as it may, assuming

that points are generated from a perspective imaging device

from a single viewpoint, the corresponding symmetric coun-

terpart of many inlier points (or even all of them) is simply not

visible. These points were first identified following a scoring

strategy that ranks every possible reflection plane normal. For

that purpose, the two angles comprising the normal's spher-

ical representation2 were quantised and the best pair was

chosen using a score penalising point pairs that are spatially

symmetric (relative to the candidate plane) while having non-

symmetric surface normals (in contrast to Thrun and

Wegbreit (2005)). The formal details follow below.

Prior to calculating a score for a candidate symmetry plane,

the inlier points without symmetric partners were dealt with.

Self-occlusion dictates that when observing an object from

one side of the symmetry plane, most of the visible inlier

points that are observed will be the ones that share the same

side with the camera. For the same reason, inlier points that

are observed on the other side should all have visible sym-

metric points on the camera's side (as shown by the banana in

Fig. 7). Knowing this, these points were found on the closer

side of the candidate plane with no partners on the farther

side and excluded from the score calculation. To do so, surface
2 A normal's magnitude is always 1 and thus only its direction
should be represented.
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normals were used, observing that a point x on a surface with

an estimated surface normal nx is visible from viewpoint pv if

nx$
�
pv � x

�
>0: (10)

Therefore, points whose symmetric partner had a surface

normal that points away from the camera were sought. A

point x with estimated normal nx was reflected over a candi-

date symmetry plane with centre point p and normal np by:

~x ¼ x� 2$np$dx; (11)

where dx is the signed distance between the point x and the

plane. Correspondingly, x's normal was reflected as well by:

~nx ¼ nx � 2$np$dn; (12)

where nx is the normal we wish to reflect and dn is the signed

distance between the normal's head and the candidate plane,

centred at the camera's axes origin with normal np. Thus, x

has no symmetric partner if:

~nx$
�
pv � ~x

� � 0: (13)

Following that, each point was assigned a point reflection

score that measured the ”wellness” of its reflection. An

observed point y with normal ny closest to ~x (and in the same

side) was found using a kd-tree data structure and the score of

x was determined by:

xscore ¼ d þ w $ a; (14)

where d is the distance between ~x and y, a is the angle between
~ny and ny (see Fig. 8), andw is a weighting factor. A lower value

implied good symmetry and the best plane was chosen as the

one that minimised the mean score of all the contributing

points. In order to have a complete reference frame for the

symmetry plane np was endowed with another unit length
ape-based 3D fruit detection for crop harvesting robots, Biosystems
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Fig. 8 e Determining a reflection score for point x using its reflection ~x, the closest point y is found (a), then the point is

scored according to the distance d and normal difference a (b).
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reference vector r that lay on the plane. It was chosen to be on

the verge of visibility according to Eq. (10), and to be directed

upwards. Summarising these constraints, we get:

1. krk ¼ 1 (r is of unit length)

2. r $ (pv � p) ¼ 0 (r is on the verge of visibility)

3. r $ np ¼ 0(r is on the symmetry plane)

4. r $ [0,1,0] � 0 (r points up)

Therefore, r can be calculated with:

r ¼ np � pv � p
kpv � pk ; (15)

and the reference frame can be completed by calculating the

third orthonormal vector:

i ¼ np � r: (16)

An illustration of the estimated symmetry together with a

complete reference frame is shown in Fig. 6.
Fig. 9 e The cRops gripper and manipulator, shown here

with the sensory rig that includes both RGB and range

cameras. Registration was done in software and provided

RGB-D point cloud used for the analyses and experimental

evaluations discussed in this paper.
4. Results and discussion

To evaluate the performance of our developed fruit detection

system it was tested on an RGB-D dataset of green and red bell

peppers taken in a greenhouse. The RGB-D datawas generated

by a SwissRanger depth camera registered with a simple RGB

camera. The dataset consists of 88 realistic images taken in a

conventional greenhouse in the Netherlands during the har-

vesting season (see Fig. 1) with the cameras placed about

500e600 mm from the foliage, at different heights from the

ground, and facing in a direction perpendicular to it. No

changes were made to the peppers or foliage apart from the

normal treatment given by the grower.

For the test, 581 of the peppers with visibility 50% or more

(as judged by a human observer) were considered. The sweet

peppers selected were labelled for position in both the RGB

and the range data by a human expert in order to facilitate

both training and quantitative testing. The work was done in

the context of the cRops harvesting robot, as shown in Fig. 9.

Before discussing the results, it should be emphasised that

fundamentally the proposed approach is a computational
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process whose components may be plugged-and-played in

various ways, replaced by other algorithms, or even removed

completely. The pruning stage, for example, was designed for

both computational efficiency (by quickly discarding image

locations if they are unlikely to contain fruits) and for reducing

the probability of false positives by the 3D detector (by elimi-

nating data where the 3D detector may wrongfully detect

targets). It is proposed to use highlights, but if other visual

cues (including colour) are readily available they may be used

too (or instead). Similarly, the symmetry estimation method

may also be replaced by another method that quickly esti-

mates a consistent reference frame for the object, or it may

even be replaced by a blind method that ignores it completely

and always returns a fixed reference frame.

The latter approach may be particularly appealing if the

input range data is so noisy that symmetry estimation be-

comes chaotic. Indeed, in order to understand the significance

of each such phase, this detector was evaluated with and

without both of these modules.

In order to empirically evaluate the detector, a common

method was followed that is used in general computer vision

challenges such as the PASCAL VOC (Everingham, Van Gool,
pe-based 3D fruit detection for crop harvesting robots, Biosystems
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Fig. 10 e The average precision-recall curves of the

different computational combinations tested on the

labelled dataset. The curve is generated by examining

different thresholds of the detection confidence supplied

by the SVM classifier. At high confidence thresholds, only

the most confident detections are returned, yielding a very

high precision but a small recall. Lowering the threshold

increases the recall but introduces more false positives and

so decreases precision. The average curve is simply the

average of precision values of different curves at the same

levels of recall. Note how for most recall values (≤0.7) the
precision when using both pruning and symmetry is

improved significantly.

b i o s y s t em s e n g i n e e r i n g x x x ( 2 0 1 6 ) 1e1 412
Williams, Winn, & Zisserman, 2010). The dataset images were

randomly divided into two sets, where the first set is used for

training (including cross validation) and the second for

testing. This process was repeated several times (in our case,

four) and performance was averaged to report mean perfor-

mance. For each random split of the data, the detector was

evaluated using the following procedure. Firstly, the detector

was executed on all the test images and a list of all detections

was saved. These results were then validated against the

manually labelled “ground truth” data mentioned above in

order to mark each detection as true or false positive accord-

ing to its distance from a “ground truth” target. In our case a

detection was defined as a true positive if its centre was no

further than 50 mm from the centre of a ground truth sweet

pepper. Clearly, this tolerance should depend on the applica-

tion and can be relaxed or tightened accordingly. Finally, a

precision-recall curve was generated, from which the average

precision (AP) measure was calculated, serving as the final

score. Precision was defined as the fraction of true positives

from the returned detection hypotheses, Recall was defined as

the fraction of true positives from all the positives, and

Average Precision (AP) was defined as the mean of maximal

precision values at a set of eleven equally spaced intervals of

the recall axis (Everingham et al., 2010). The entire process

was slightly contaminated by correct detections of highly

occluded fruits that were not labelled as “ground truth” sweet

peppers because their visibility was <50%.

Table 1 lists the mean average precision for each variation

of our algorithm, while Fig. 10 shows the corresponding

average precision-recall curves. As can be seen, the best

combination was the one including symmetry detection and

pruning basedonhighlights.While thedifferencesmayappear

small, they represent averageperformance for all recall values,

including those for unrealistic recall values where precision

essentially vanishes and the detector practically considers

everything as a positive. Compared to state-of-the-art in object

recognition from range data (Janoch et al., 2011) this perfor-

mance was superior, especially when considering the signifi-

cant level of complexity of agricultural data compared to

typical indoor scenes used in existing computer vision studies.

As mentioned above, to assess the contribution of each

component in our pipeline we processed the results both with

and without it. The results with pruning are always better

than those without it, and when pruning is included the

contribution of symmetry is very significant. Somewhat un-

expectedly, when pruning was not included (and this the 3D

detector processed all range data) the inclusion of symmetry

detection in the 3D detector provided no improvement.
Table 1 e Mean average precision for different
component combinations in our detector. Values are
rounded to two digits after the decimal point.

Mean average
precision

Without
symmetry

With
symmetry

without pruning 0.52 0.51

with pruning 0.53 0.55

Bold value emphasizes the evaluation result of the algorithm

including all suggested components.
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Visually examining the detected symmetry planes, many

examples revealed that the SwissRanger depth camera

provided very noisy measurements under real conditions in

greenhouses and that without highlight pruning from the

RGB image much higher false positive rates were sustained.

With better range sensors, the results are expected to pro-

vide much improvement even if pruning is not used (though

there is little incentive to do so). To verify this hypothesis,

an experiment was set up to remove the effects of such

noise but remain as close as possible to the original dataset.

An image containing foliage, but with no visible peppers

was used, to which was added several instances of a syn-

thetic peppers inside the foliage. The synthetic peppers,

generated from a 3D model, were placed in different poses,
Table 2 e Average run-times in seconds for different
component combinations in out detector.

Average run-time (s) Without symmetry With symmetry

without pruning 152 345

with pruning 91 197

The times were calculated on a 32-bit system, with 3 GB of RAM,

and an Intel® Core™ i5760 processor (2.8 GHz). Performance is not

real time but at this research stage no code optimisation, paral-

lelism, or the use of GPU were employed.
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with the non-visible part (the part occluded from the range

sensor) removed. The algorithm was tested with and

without symmetry detection (and without pruning in both

cases) and the average precision was calculated for both

cases. This time the algorithm incorporating symmetry

indeed improved the performance, effectively doubling the

mean average precision from 0.027 to 0.043 and confirming

our hypothesis that beyond a certain level of noise (as was

the case with the SwissRanger depth camera) the ability to

detect the symmetry plane reliably is diminished.3

The system was implemented in Cþþ, using the Point

Cloud Library (Rusu & Cousins, 2011) and OpenCV (Bradski,

2000). The average run-times of the different component

combinations in the detector can be seen in Table 2.
5. Conclusions

A fruit detection algorithm has been presented that is

agnostic to colour and provides much robustness to shape

variations and occlusions. It can be used for various tasks

with agricultural robots where accurate localisation in space

is required but specifically for automatic grasping and har-

vesting of fruit. In order to provide this novel functionality

our algorithm consists of a rapid pruning phase based on

visual highlights that are detected by seeking their proto-

typical signature on image gradients. This is then followed

by local symmetry detection in range data, and the repre-

sentation of shape features relative to this detected sym-

metry in order to obtain partial post invariance. Finally, a

classifier is used to classify measured data into fruits or

background (e.g., foliage) in the presence of occlusions,

where the estimated symmetry provides partial pose esti-

mation as well. This approach was evaluated on a chal-

lenging sweet pepper dataset in conjunction with a real

research platform for selective harvesting (FP7 cRops proj-

ect). It showed how the combination of pruning and sym-

metry estimation improves upon standard classifiers that do

not include these components.
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