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Abstract: Despite extensive research conducted in machine vision for 
harvesting robots, practical success in this field of agrobotics is still limited. 
This article presents a comprehensive review of classical and state-of-the-art 
machine vision solutions employed in such systems, with special emphasis on 
the visual cues and machine vision algorithms used. We discuss the advantages 
and limitations of each approach and we examine these capacities in light of the 
challenges ahead. We conclude with suggested directions from the general 
computer vision literature which could assist our research community meet 
these challenges and bring us closer to the goal of practical selective fruit 
harvesting robots. 
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1 Introduction 

Advanced agricultural automation has increased productivity many folds by reducing 
manual labour and production costs, increasing yield and quality, and enabling better 
control over environmental implications. Despite these developments, numerous 
agricultural tasks are still being handled manually, challenging the consistently shrinking 
(and increasingly more expensive) agricultural labour force with physically hard, 
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repetitive, and time-consuming operations that are still too sophisticated for present-day
robotic systems.

A critical aspect in successful agricultural robots (henceforth, agrobots) is their
ability to process sensory information, and in particular, their capacity to analyse and
interpret visual input. Indeed, the coupling of visual data with proper machine vision
algorithms may facilitate numerous operations and advance agricultural automation
to new levels. However, the challenges associated with machine vision in severely
unconstrained environments like those encountered in agricultural settings are countless:
objects of various colours, shapes, sizes, textures, and reflectance properties; highly
unstructured scenes with large degree of uncertainty; ever-changing illumination
and shadow conditions; severe occlusions; and the sheer complexity of the typical
unstructured agricultural scene, are only part of the problems that such a machine vision
system must face. It is no surprise then that present-day success is still limited, leaving
agriculture as an important frontier of applied computer vision.

While machine vision in agrobotic systems (henceforth, agrovision) is yet to reach
its full potential, many applications have been developed for various tasks in the fields,
orchards, and greenhouses. Among these are autonomous navigation and obstacles
avoidance (Astrand and Baerveldt, 2005; Wei et al., 2005; Zhao and Jiang, 2011),
precision and selective spraying (Berenstein et al., 2010; Tellaeche et al., 2008);
weed detection (Slaughter et al., 2008), yield estimation (Chinchuluun and Lee, 2006;
Qiao et al., 2005), seedling planting (Huang and Lee, 2010) and ripeness and quality
evaluation (Yongjie et al., 2010). However, perhaps the most prevalent application has
been fruit detection (Bulanon et al., 2002), where the goal is

1 to detect the presence of individual fruits

2 to discriminate them from the rest of the scene (leaves, branches, sky, etc.)

3 to localise them in space.

All these detected targets are then used in order to facilitate the interaction of the fruit
with robotic manipulators and end effectors for further handling and physical processing,
and in particular for harvesting operations. Interestingly, although much attention was
given to these three visual processing problems during the last 30 years, no selective
harvesting robot has ever reached commercial maturity. While this unfortunate outcome
cannot be blamed solely on the failure of machine vision to handle the challenges posed
by the unconstrained and unstructured agricultural environment, it is undeniable that
successful machine vision is critical for achieving high detection rates of ripe fruit in
real time, all of which are mandatory preconditions for a selective harvesting agrobot to
be efficient and cost-effective.

With the identification of the above as a bottleneck task on which progress
in agrobotical research and systems greatly depends, in this paper we present a
comprehensive review of the state-of-the-art in fruit detection and localisation for
harvesting robots. Inspired by an early survey by Jimenez et al. (2000b), here we
systematically summarise the related literature from the last two decades, but in order
to facilitate a comprehensive outlook, and to provide useful reference for researchers
who seek to explore the relevant literature, the bulk of our review is organised around
three main themes or criteria - the sensory configuration used by the various systems,
the visual cues employed, and the class of machine vision algorithm put to work. With
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this division, researchers can also use this review as a reference guide for a particular
type of solution they may have in mind for future systems. For each such approach
we also discuss the limitations of present-day solutions and later on we expand on the
challenges ahead more generally. We conclude with suggested directions for the research
community to follow in order to meet the goal of practical (perhaps even commercial)
selective fruit harvesting robots.

2 Imaging sensors

Although this paper focuses on machine vision, and therefore on sensory data acquired
by cameras, it is important to acknowledge that even within this relatively narrow
sensory mode, the variability of sensor configurations and types is still large, ranging
from a single grey level camera in entry-level systems, to combinations of hyperspectral
cameras with non-visual sensors in high end systems. To set the background properly,
here we quickly review the main configurations that can be found in the literature.

2.1 Single camera

The sensors employed in most previous studies are standard BW or colour CCD
cameras, typically positioned on the body of the robot or the main platform to provide
a single view on the scene being analysed (Bulanon et al., 2001, 2002; Bulanon and
Kataoka, 2010; Okamoto and Lee, 2010; Zhao et al., 2005). Less frequent are systems
with a camera placed on the robot’s end effector (Hayashi et al., 2002; Ling et al., 2004)
while in still fewer cases the system employs both types of cameras to enjoy global
view of the scene and a gripper-centred close-up view on specific targets (Edan et al.,
2000; Feng et al., 2008; Van Henten et al., 2002; Yuan et al., 2010).

2.2 Calibrated stereo

Naturally, multiple cameras can provide greater information than single ones, and
when they form a calibrated pair, their stereo configuration can be used to extract
depth information on the imaged objects via triangulation and the analysis of the
disparity between corresponding points (Hartley and Zisserman, 2000). Indeed, the use
of calibrated stereo in harvesting agrobotics has greatly increased in recent years (Jiang
et al., 2008a; Kitamura et al., 2008; Kondo et al., 2008; Kong et al., 2010; Takahashi
et al., 2002; Yuan et al., 2010). To the best of our knowledge, multiview configurations
involving more than two cameras (e.g., Kang et al., 2008) were not used in harvesting
robots, although multiple stereo pairs have been employed, mainly to improve target
visibility and to handle extreme illumination variations (Plebe and Grasso, 2001).

2.3 Vision and range sensors

Acknowledging that depth information that is obtained purely visually may suffer
inaccuracies, some researchers have endowed visual input with range sensors in order
to acquire depth more directly so that better fruit detection is obtained (Jimenez
et al., 2000a; Monta and Namba, 2003). When reviewed in this paper, however, such
configurations will be examined for their vision components only.
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2.4 Spectral imaging

With the development of sensor and spectroscopy technology, spectral imaging has
become a popular means for recognition of objects based on their different reflectance
in selected wavelengths. Naturally, this approach may provide significant advantage
when targets and non-targets (e.g., fruits and foliage) have the same apparent colours
(Kane and Lee, 2006, 2007; Kondo et al., 1996; Van Henten et al., 2002; Yuan et al.,
2010). Especially effective for discrimination purposes in this context are the 970 nm
and 850 nm near infrared (NIR) wavelengths due to significant difference in water
absorption (Kondo et al., 1996).

2.5 Hyperspectral imaging

Extending both standard colour (RGB) imaging and spectral imaging from other selected
spectral bands, hyperspectral imaging is an emerging technology that (in the spectral
resolution limit) provides the complete spectral signature for each pixel in the visual
field of the camera. Clearly, with the overwhelming amount of additional information
available, better decisions can be made regarding fruit detection and classification
(Okamoto and Lee, 2009; Safren et al., 2007). This, however, comes at a costly price,
both in acquisition time (at the order of minutes per image) and processing time. Hence,
at the present state of the technology, it is typically used for offline processing and
for preprocessing of data for the identification of selective spectral channels whose
processing may provide useful decisions in real time.

3 Visual cues

The type of image sensor aside, many machine vision algorithms are also characterised
by the visual cue, or cues, on which they operate. In an attempt to exploit every possible
type of information in the complex agricultural environment, computer vision algorithms
in harvesting robots have tried to use a variety of visual cues and properties. Before
turning to discuss algorithms in the next section, the present section quickly surveys the
literature along this dimension (see also Figure 1).

3.1 Colour

Since fruits, and ripe fruit in particular, tend to have different colours than the foliage
and branches around them, colour becomes one of the most popular visual cues used
in harvesting robots that employ machine vision. Typically, colour is used in the RGB
representation (Arima et al., 2003; Bin et al., 2010; Jiang et al., 2008a; Okamoto and
Lee, 2010), though other colour spaces , both standard (e.g., Annamalai et al., 2004;
Jiang et al., 2008b; Kondo et al., 2008; Regunathan and Lee, 2005; Tarrio et al., 2006)
and ad hoc (Feng et al., 2008), have been employed also. Naturally, colour may not
provide a solution when the targets and their surrounding have similar look (Okamoto
and Lee, 2009, 2010; Van Henten et al., 2002), and unless dealt with explicitly, can
suffer from uncontrolled or changing illumination and shadows (Bulanon et al., 2002,
2009; Hannan and Burks, 2004). Some of these difficulties are presented in Figure 2.
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Figure 1 Typical visual cues used for target detection in harvesting robots, (a) a typical citrus
fruit can be separated from the background by colour only, and here this is done by
calculating the proportion of the red channel in each pixel (reproduced from Hannan
et al., 2007) (b) spectral reflectance, the reflectance in selected (top right) or all
wavelengths (top left), may be used to distinguish fruit (in this case, green citrus)
from background when they share the same observed colour, the graphs below,
show the spectrum of old leaf vs. green fruit and indicate that specific wavebands
can be used to distinguish between them (reproduced from Okamoto and Lee, 2009)
(c) thermal response allows to highlight citrus fruit whose colour, potentially an
indicative cue, is very sensitive to illumination conditions (reproduced from
Bulanon et al., 2009) (d) the smooth skin of the fruit reflects a different visual
texture than the background, and can be utilised to distinguish it from the foliage,
this property is measured here via the density of measured edge elements in unit
area (reproduced from Okamoto and Lee, 2010) (see online version for colours)

(a) (b)
a. color

(c) (d)

3.2 Spectral reflectance

colour analysis can be applied very conveniently for non-green fruits. However, when
the chromatic differences between the fruit and its background foliage are more subtle
(say in green peppers, pears, or cucumbers), it becomes more difficult to use raw
colour as a discriminating factor. Still, as is well known from metamerism (Wyszecki
and Stiles, 2000), objects of similar colours do not necessarily have the same spectral
signature, and in some cases they reflect quite differently in selected discrete channels,
either inside or outside the visible light range. Hence, spectral reflectance can constitute
an effective discriminatory factor and indeed it is being used increasingly more often in
harvesting robots.
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Figure 2 Difficulties involved in colour as a visual cue: although the two apples hold the
same perceptual colour (see also the discussion about colour constancy in
Section 5.1), illumination variations even in the same scene greatly affect their
measured colour components histograms (here in RGB space), note the [(a) and (b)]
differences between different objects in the same scene, which correspond to the
two apples) and [(c) and (d)] differences within the same object also, which
correspond to the two parts of the lower apple) (see online version for colours)
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Ultimately, the entire spectral signature would be used for analysis after being measured
by a hyperspectral imaging device (Okamoto and Lee, 2009; Safren et al., 2007). To
maintain real time performance, however, spectral reflectance is often only obtained
from selected spectral channels via standard cameras equipped with narrow-band filters
(Van Henten et al., 2002; Yuan et al., 2010) or by laser modules operating in specific
wavebands (Tanigaki et al., 2008). For example, Figure 1(b) (lower right graph) presents
the spectral reflectance of a green fruit and shows how it reflects predominantly in
certain wavelength channels.

Figure 3 Advantages and limitations of spectral response as a discriminatory cue (reproduced
from Okamoto and Lee, 2009), (a) spectral response of green citrus shows how it
reflects predominantly in certain wavelength channels, a fact that can be used for
discrimination (b) despite its strength, spectral signature cannot always resolve
targets from background

(a) !$#(b)

Note: As can be appreciated in comparison to Figure 3(a), young leaves often reflect
similarly to green fruit, making it more difficult to use the spectral response as a
discriminatory cue.
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Whether one uses the entire spectrum of selected spectral channels, the significant
potential in exploiting this visual cue is not without limits. First, spectral response is
still sensitive to illumination conditions (Van Henten et al., 2002; Yuan et al., 2010).
Furthermore, it is not impossible that both the fruit and the background foliage will
have the same spectral signature under the operating illumination, as shown in Figure 3
for the green fruit and the young leaves. Hence, spectral response alone cannot always
provide discrimination. Moreover, despite its strengths, spectral reflectance cannot
resolve issues that relate to the spatial organisation of the visual data, such as difficulties
in detection due to occlusions.

3.3 Thermal response

Highly related to spectral reflectance is the thermal response of objects, i.e., their emitted
radiation in the infrared range where it is strongly affected by both the temperature
and the emissivity of materials, typically in the spectral range of 9–14 µm (Bhanu
and Pavlidis, 2004). Implied by the black body radiation law (Kittel and Kroemer,
1980), such infrared radiation is emitted by all objects above absolute zero in a
manner increasing with temperature. Hence, thermography makes it possible to ‘see’ the
environment with or without active (visible or non-visible) illumination and to sense
variations in temperature in and between objects. Figure 1(c) presents an example of
citrus fruit and a corresponding thermal image.

Figure 4 Thermal profile of the canopy and the fruit during a 24-hour period (reproduced
from Bulanon et al., 2009)

Note: The graph shows both the variability of the thermal response and how foreground
and background objects sometimes become indistinguishable by this cue during the day.
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Since leaves, unlike fruits, accumulate significantly less heat and emit it for a shorter
time, thermography provides an excellent approach for target detection in harvesting
machines (Bulanon et al., 2009). However, since the thermal response is sensitive to
the illumination (exposure to sunlight) and heat accumulation, fruit on different parts of
the tree might respond differently and complicate the exploitation of this vital source of
information (Bulanon et al., 2009; Stajnko et al., 2004). Furthermore, detection problems
may arise during significant parts of the day when fruit and leaf canopy have the same
response (Figure 4). Naturally, issues related to the spatial organisation of the visual
data and the effects of occlusions are not addressed by this visual cue either.

3.4 Texture

While colour and spectral reflectance are purely local (point-wise) properties, virtually
all objects in the physical world occupy extended spatial area, and hence can be
represented with non-local descriptions. Texture, the repeated visual pattern that covers
surfaces and regions (either regularly or stochastically), is perhaps the first visual cue
that goes beyond purely local cues to describe the appearance of small image patches
(Nalwa, 1993; Forsyth and Ponce, 2002). In agricultural settings it can be used as a
discriminatory factor between different types of objects, and in particular, between fruits
and their surroundings (Okamoto and Lee, 2010; Rakun et al., 2011; Zhao et al., 2005).
An example for texture cue can be seen in Figure 1(d). The smooth skin of the fruit
(a texture property) is utilised to distinguish fruit from foliage by using edge detection:
While few edges are detected on the fruit’s skin due to its smoothness, many edges are
detected on the leaf area. Hence, when the skin of the fruit is indeed smooth, patches of
significant size and low edge density could represent the target quite robustly (Okamoto
and Lee, 2010).

Clearly, texture could serve as a particularly effective cue when colour is not
discriminatory enough, and it is usually more stable than reflective properties under
illumination variations. Still, being confined spatially, texture must be combined with
additional visual cues to handle global spatial confounds like occlusion (Rakun et al.,
2011). Naturally, the descriptors used must also be powerful enough in order to
handle cases where the differences in texture appearance between the targets and the
background are finer than, for example, the first order distribution of edges.

3.5 Shape

Great difficulty in detecting fruit in unstructured environments arises from the
extreme variations in illumination conditions (Harrell et al., 1989) which cause
extreme appearance variations. One global visual cue that could be less susceptible
to illumination is the shape of the target, and although it is more computationally
demanding to extract and analyse, shape is becoming increasingly more popular in
harvesting robots (Chi and Ling, 2004; Edan et al., 2000; Hannan and Burks, 2004;
Hayashi et al., 2002; Jimenez et al., 2000b; Kong et al., 2010; Ling et al., 2004; Liu
et al., 2011; Okamoto and Lee, 2010; Rakun et al., 2011; Yuan et al., 2010; Zhang
and Zhang, 2008). At its essence, shape implies a particular spatial relationship between
the geometrical atoms (points, occluding contours, surfaces) that make up a coherent
physical object. Since fruits are practically rigid objects, their shape relationship remains
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invariant in the three dimensional world. Although few invariances persist under
perspective projection (Nalwa, 1993; Forsyth and Ponce, 2002), shape remains a strong
visual cue in the 2D image plane as well as under illumination variations (see Figure 5).

Figure 5 Shape as a visual cue, (a) the shape of a fruit (in this case, peach) tends to persist
even under extreme variation in appearance due to illumination, compare top and
bottom images (reproduced from Liu et al., 2011) (b) despite robustness to
illumination variations, shape is extremely sensitive to variations due to occlusions,
note how the circular projection of the apples changes drastically when occluded
(c) shape exhibits large variability within each class, the contours on the right show
different shapes that the projected image of sweet peppers might take (see online
version for colours)

=+C =<C =.C
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Despite its strengths, shape can be difficult to extract and analyse, a time consuming task
which was impossible to achieve in standard computational hardware until recent times.
Shape is also extremely sensitive to occlusions [see Figure 5(b)] and in most cases,
it exhibits large variability even within classes of targets [see Figure 5(c)]. Hence, in
most previous work where shape is used explicitly, analysis employs very simple shape
models and is used with fruits whose image projection can be reasonably modelled as
spheres (Chi and Ling, 2004; Edan et al., 2000; Hannan and Burks, 2004; Jimenez et al.,
2000b; Kong et al., 2010; Ling et al., 2004; Liu et al., 2011; Okamoto and Lee, 2010;
Rakun et al., 2011; Zhang and Zhang, 2008). Notable exceptions in this context are
studies on eggplants (Hayashi et al., 2002) and cucumbers (Yuan et al., 2010).

3.6 Fusion of visual cues

As could be expected, a single visual cue rarely represents the target object in a
satisfactory manner except in extreme cases. In harvesting robots, attempts to detect
fruits using a single visual cue typically encounter problems due to illumination
variations, spatial occlusions, and appearance variations. However, since each visual
cue represents different aspects of the target, it is reasonable to hope that one visual
cue could compensate for the representational limitations or flaws of the others. Hence,
fusing several cues together may provide increased performance altogether, an approach
that has been employed in computer vision in general (Zheng and Xue, 2009) and in
agricultural settings in particular (Patel et al., 2011). While most studies in this review
indeed employ such an approach (see Section 4), here we only note that fusion of visual
cues can be done at different levels of representation, and in particular, at the image
level (Bulanon et al., 2009) or at the algorithm level (Wachs et al., 2010).
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4 Image analysis algorithms

With imaging sensors and visual cues relevant for target detection in harvesting robots
briefly reviewed, in the bulk of this paper we discuss the algorithms, methods and
computational approaches used in this unique domain of application. To facilitate more
constructive presentation of the technical content, this review is organised by the type
of algorithms employed, rather than chronologically or by agricultural criteria (e.g., fruit
kind). We believe that this organisation better serves to identify patterns in the literature
and provides useful reference for future research in the field.

4.1 Elementary methods for image segmentation

Detection of suitable targets for harvesting operations can be modelled as segmentation
of the image to fruits and background. Connected components in the segmented image
could then be considered as harvesting targets (assuming no occlusions). Employing the
most elementary methods for segmentation, a vast number of studies have approached
this problem via thresholding the visual cue (typically, colour) map at proper values
(Annamalai et al., 2004; Arima et al., 2003; Bin et al., 2010; Bulanon et al., 2001, 2009;
Edan et al., 2000; Feng et al., 2008; Hannan and Burks, 2004; Hayashi et al., 2002;
Jiang et al., 2008a, 2008b; Liu et al., 2011; Okamoto and Lee, 2009, 2010; Rakun et al.,
2011; Stajnko et al., 2004; Tanigaki et al., 2008). Similar approach has been used on
other visual cues as well, such as spectral reflectance (Okamoto and Lee, 2009) and
texture (Zhao et al., 2005).

As is well known from the general computer vision literature, predefined global
thresholding is prone to fail in most scenarios (Haralick and Shapiro, 1985; Nalwa,
1993), which promoted several researchers to propose adaptive thresholding methods
also (Bulanon et al., 2002; Chi and Ling, 2004; Kane and Lee, 2007; Ling et al.,
2004; Yuan et al., 2010) where the threshold is automatically adjusted to the ambient
illumination conditions. Interestingly, to the best of our knowledge, no attempt was
made to use spatially-varying local thresholding in the context of agrovision despite its
decades-long presence in the general computer vision literature (e.g., Weszka, 1978).

While adaptive thresholds may provide improved results within the domain of global
thresholding (see Figure 6), the high variance which is typical of the unstructured
agricultural scene implies that one can expect such algorithms little more than coarse
and inaccurate segmentation, an observation that encouraged other researchers to employ
other elementary segmentation methods as well, such as edge detection (Zhao et al.,
2005), region merging (Safren et al., 2007), and region growing (Kong et al., 2010). In
these cases too, one visual cue (e.g., texture or spectral reflectance) was used to define
homogeneity of regions. Selected results are illustrated in Figure 6.

One additional problem of elementary methods for segmentation is their ignorance
of all shape information or expectations. Indeed, unless dealt with explicitly, these
methods are likely to provide segments which include clusters of fruits, rather than
individual fruits [Figures 6(a), 6(c) and 6(d)]. For some applications, like spraying, this
may not pose a major problem. For harvesting robots, however, this missing component
is critical. Notable attempts to handle this problem without shape information have used
watershed segmentation (Regunathan and Lee, 2005; Safren et al., 2007), where the
grey scale image is considered a topographical surface and boundaries are defined as
the curves that separate basins of flooding [Figure 6(d)].
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Figure 6 Selected results using elementary methods for image segmentation, (a) predefined
global thresholding (reproduced from Hannan et al., 2007) (b) adaptive global
thresholding (reproduced from Bulanon et al., 2002) (c) region growing (reproduced
from Kong et al., 2010) (d) watershed segmentation (reproduced from Safren et al.,
2008) (see online version for colours)
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4.2 Clustering

Clustering, as a form of unsupervised learning approach (Marsland, 2009), has also
been employed in machine vision algorithms for harvesting robots to partition the
image into targets (fruits) and background, especially when multiple visual cues are
fused together. Although more advanced clustering methods have been developed, most
clustering approaches in fruit detection algorithms have employed the classical k-means
algorithm (Marsland, 2009) in various colour spaces, exploiting the fact that the number
of clusters in this application is known in advance (Bulanon et al., 2004b; Bulanon and
Kataoka, 2010; Chinchuluun and Lee, 2006; Wachs et al., 2010).

One of the major aspects of clustering techniques is the choice of a distance measure
between data points in a feature space, while one typically defines it based on an Lp

norm (where p is usually selected as 1, 2, or ∞ for the Manhattan, Euclidean, or
the maximum norms, respectively). Euclidean distance is sensitive to the scaling of
the variables involved and has no means of taking into account correlated variables.
Some studies in the harvesting robots literature have employed a clustering method
based on Mahalanobis distance (Zhen et al., 2007). In settings involving non-spherically
symmetric distributions of data points, as normally obtained when mapping images of
natural environments into a certain feature space, the Mahalanobis distance is better
adapted than the Euclidean distance, since it takes into account the covariance among
the variables in calculating distances. With this measure, the problems of scale and
correlation inherent in the Euclidean distance are no longer an issue.

Since basic clustering only replaces more elementary methods for image
segmentation, it exhibits several similar limitations and drawbacks. In particular, it is
sensitive to illumination conditions and it often needs to cope with feature points that
do not cluster or separate well into clusters (Figure 7). Furthermore, clustering of local
feature points is intrinsically agnostic to shape aspects and hence, unless combined with
other methods with shape-explicit considerations, it is unlikely to provide a practical
solution to selective harvesting robots.
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Figure 7 Feature point distribution of leaves, apples, and background points in a typical
agricultural scene (reproduced from Wachs et al., 2010) (see online version
for colours)

Note: While the colours represent clustering results, the lack of clear division into clusters is
evident.

4.3 Template matching

Template matching is a technique for recognising portions of a given image that match
(typically in terms of appearance) with a specific template pattern. The matching
process is usually done by moving the template across the image, while performing
a computation that aims to determine how well the template matches the image in
each position. Typically, this computation is based on similarity measures such as
cross-correlation and sum of squared differences (SSD). Additional similarity measures
are based on specific features of the image such as edges and corners. Template
matching is useful in contexts where the diversity of the target object is small enough.
Thus, considering the high variability characterising natural environments, it is not
surprising that this technique has been used only rarely in the context of harvesting
robots. One notable example is due to Zhang and Zhang (2008) who applied template
matching to a binary image of blobs representing target objects. This reduced the
variability of the target objects when they were compared with a perfect circle structure
as a template. The matching was done using a joint transform correlation, where the
template and binary image were placed side by side forming a joint image as input
to the cross correlation process. The peaks in the output cross correlation spectrum
corresponded to the cross correlation of the joint image with itself and the cross
correlation of the template with a target object. A blob was declared a fruit according
to the ratio between the two peaks.
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4.4 Shape inference

As mentioned in Section 3, shape is a major visual cue that harvesting robots
should exploit, especially when fruit handling must be selective and individual. As a
fundamental problem in computer vision, shape inference is concerned with finding a
shape that best fits the geometric evidence measured from the image (Forsyth and Ponce,
2002). Choices of such evidence include geometric atoms like points, lines, hyperplanes
etc. and the inference process can involve a variety of mechanisms such as voting
(see next subsection), statistical inference, or optimisation (deterministic or stochastic).

Within this realm, shape can be inferred either globally or locally. Global shape
inference requires a definition of a shape model for the anticipated targets, and the
use of fitting techniques to locate instances of the model under expected observable
transformations. Local shape inference usually involves the inference of local shape
descriptors and the accumulation of enough compatible evidence to indicate the presence
of a particular shape instance. The difficulties in both cases lie primarily in the
construction of good models for the fruits at hand, and global shape inference also
suffers from the computational cost involved in detecting instances of the model in
the image. Hence, in practice, the majority of shape inference methods have confined
their domain of application to spherical fruits, where both the model and its detection
are perhaps the simplest possible. Furthermore, most related papers have focused on
local inference techniques whose realisation can be done with simpler computational
and algorithmic means. A notable exception is the work by Jimenez et al. (2000a),
where in addition to local inference processes, a least square sphere fitting procedure
was applied to range data. When applying local shape inference, various techniques
have been employed. Plebe and Grasso (2001), for example, have devised an adaptive
edge fitting process to detect spherical shapes by estimating the centre point and radius
of each portion of an edge. In their work, edges were grouped into closed curves, and
each closed curve was labelled as a separate object. For each portion of an edge, the
curvature and the radius of curvature were calculated according to the length of the arc
of edge and the angle corresponding to the arc. These data were then used to estimate
the position of the hypothetical circle that goes through the edge. When a sharp variation
in the position of the estimated centre is detected, the mean value of the positions of
the centres and of the radii of all evidence thus far is calculated and declared as a fruit
centre and radius, after which the evidence for a new fruit is beginning to accumulate.

Somewhat differently, Jimenez et al. (2000a) proposed an approach based on the
generation of a set of primitives that are characteristic to spherical objects: contour
and crown pixels, convex regions and reflectivity-based regions. Due to their ability to
cover the whole surface with little overlapping, these primitives are considered useful
in accumulating evidence in recognising spherical fruits. In addition, since they detect
different areas of the sphere, they are found appropriate in dealing with occlusions. The
extracted primitives are used to estimate sphere parameters and a degree of confidence
over that estimation. Contour and crown primitives are fitted through circular Hough
transform (cf., Section 4.5) while convex and reflectance primitives are used to initialise
a least square sphere-fitting process. Each one of the extracted primitives is used to
generate a partial hypothesis about the existence of a sphere. At the last step, the four
partial hypotheses are integrated to generate a final hypothesis and the hypotheses not
having a sufficient evidence value are rejected.
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Finally, it is worth mentioning the shape-related approach employed by Okamoto
and Lee (2010) where the edge map of the input image was analysed through a
geometrical template consisting of a circular region and an outer ring both having
predefined dimensions. The ratio between the number of edge points included in these
two components was then used to discriminate and locate fruits from the background,
though clearly this method is limited to a single circular instance.

4.5 Voting

Voting is a computational technique in which each local visual evidence in the image
votes for all possible global interpretations it could arise from. Casting and accumulating
all these votes (from all evidences) in an ‘interpretation space’ results in a distribution
of votes that could indicate which interpretation is consistent with most evidence and
hence should be selected. In vision, this technique has been used almost invariably for
the detection of shapes and patterns.

One popular voting technique formulated in the early days of computer vision is the
Hough transform (Ballard, 1981; Illingworth and Kittler, 1988). Although formulated
for lines, a proper variation of the Hough transform is the circular Hough transform
(CHT) whose goal is to find circular patterns. The CHT is used to transform a set of
points in an image space into a set of accumulated votes in a parameter space, where
each point represents one possible instance of a circle. Votes are accumulated in an
accumulator array for all parameter combinations and the array elements that contain
the highest number of local maxima of votes indicates the presence of the shape. In
agrovision, CHT was used to detect spherical fruits as oranges (Jimenez et al., 2000a),
apples (Wachs et al., 2010) and coconuts (Rizon et al., 2005).

The Hough transform and the CHT are relatively expensive in computation,
and hence several techniques were used to improve their complexity. For example,
expectations about the observed radius of fruit were used to limit the parameter space,
either globally (Jimenez et al., 2000a) or dynamically for each candidate (Wachs et al.,
2010). In other cases, the number of votes per image point was reduced using edge
direction information (Jimenez et al., 2000a; Rizon et al., 2005), and detection of peaks
in the parameter space was enhanced using the back-transformation method (Jimenez
et al., 2000a), which is suited for complex images where the boundaries are partially
missing, obscured, or distorted. The back-transform strategy is used for interpreting the
resulting accumulator array in the parameter space in a simplified way which increases
the detection accuracy (Gerig, 1987).

Since the CHT remains computationally expensive despite such improvements, faster
alternatives have been proposed and applied. Attempting to detect tomatoes, Ling et al.
(2004) and Chi and Ling (2004) observed that the interception of perpendicular bisectors
of any two chords of a circle is the centre of the circle (Figure 8). Hence, in these
studies, every intersection point between two perpendicular bisectors was declared as
potential centre point and was voted in an accumulator array. The peaks in the array are
chosen to be the centre points of the tomatoes.

Interestingly, although extensions of the Hough transform have been proposed for
more general shapes (Ballard, 1981), to our best knowledge these voting techniques was
never used for non-spherical fruits.
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Figure 8 Voting one shape via shape properties (reproduced from Ling et al., 2004)
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Note: The centre of a circle could be determined from an interception of the perpendicular

bisectors of any two different chords.

4.6 Machine learning

Machine learning, a branch of computer science which deals with the design and
analysis of algorithms that improve their performance based on observable data, is often
used for problems whose definitions or solutions lack well defined formalism. Ever
since its inception in the early days of computer science, machine learning has evolved
into a distinguished set of approaches such as decision trees, evolutionary computation,
and Bayesian networks. However, only three main approaches have penetrated the
community of target detection for harvesting robots: clustering (cf., Section 4.2),
artificial neural networks (ANN), and support vector machines (SVM).

An ANN is a formal computational model that is used frequently in machine learning
and is inspired by the rough structure of neural circuitry in biological nervous systems
(Gurney, 1997). Used in conjunctions with all learning paradigms (e.g., unsupervised,
supervised, reinforcement), ANN have been quite popular in machine vision for
harvesting robots as well. In particular, ANN has been proposed for classification
between different elements in the scene such as fruit vs. background (Bulanon et al.,
2004a; Regunathan and Lee, 2005). In such cases the input values (usually local colour
features) are fed to the input layer of the network while the output layer provides a
binary categorisation. Training such networks is usually done in a supervised fashion by
providing fruit and background examples (Plebe and Grasso, 2001) to build a look-up
table that maps each point in the selected colour space to its corresponding class (fruit,
background). More elaborate use of ANN was proposed by Wachs et al. (2010) who
fused three ANN classifiers, one for each of the three colour spaces L * a * b, HSV,
and RGB, in order to leverage the advantages that each one may provide. First, each
of the three ANNs classifies the pixels of each image patch (subwindow) into several
predefined classes (apple, leaves, branches, ground and sky). Then, a majority vote
among the networks determines the final class that is associated with the patch.

As mentioned above, in addition to ANN, another popular learning-based approach
used in target detection in agrobotics is SVM – a supervised learning method
for classification and pattern recognition. SVM analysis performs classification by
constructing an N-dimensional hyperplane that optimally separates classes of data into
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two categories. In the case of SVM, optimality is defined by maximising the distance
between the separating hyperplane to the nearest neighbour in each of the separated
classes, a notion also known as the margin (Cristianini and Shawe-Taylor, 2000).

In target detection for agrobotics, SVM has been used to classify objects with
prototype texture against other possible patterns. This method has been applied, for
example, for the detection of apples (Rakun et al., 2011). Apple detection was also
done via LS-SVM, a version of SVM which solves a set of linear equations (instead
of optimising a quadratic function of several variables in the classical SVM) based on
several colour and shape feature values (Kong et al., 2010).

5 Challenges ahead and possible directions

The review and literature summary presented above suggest several trends that
characterise the work on computer vision for fruit harvesting robots. In general, different
studies in this area appear rather separated, little reused or developed progressively,
often ad hoc, and almost always quite disconnected from progress offered in the
general computer vision literature. This, however, should not come as much surprise.
Unfortunately, agricultural robotic systems are complicated integrated systems in which
particular modules are often required to address very specific and applicative needs
in real time. As a result, much of the solutions offered employ only simple (even
simplistic) computer vision tools where the emphasis goes for more informative sensory
methods rather than for more sophisticated analysis techniques. While the former should
not be neglected, of course, we believe that the age of super fast computers offers
new opportunities in terms of the latter, with which the main challenges of precise,
autonomous, and selective agrobotics may be addressed more successfully. In what
follows we discuss several of these challenges more closely.

5.1 Reconsidering classical cues

Undoubtedly, the use of colour as a visual cue masters the literature on fruit detection
for harvesting robots. In most cases, there is a good reason for this. A ripe tomato
clearly stands out from the green foliage by its colour, as are yellow sweet peppers or
purple grapes. But clearly, selective agrobotics may need to deal with green fruit also
(cucumbers, green apples, pears, lime, white grapes, green peppers, etc.), and may also
need to handle unripe or immature fruit (e.g., for diseases detection or for spraying
during the growing season). Furthermore, since reflected light depends critically on the
incident light, illumination conditions affect measured colour in a significant way.

Following these observations, it is clear that using colour alone in a straight forward
manner is likely to provide poor results in many cases. The challenge is therefore
twofold. First, one may attempt to find visual signatures that are very robust to (and
ultimately, independent of) illumination conditions, as is the case with human perception
(see Figure 9 or the two apples in Figure 2). These capacities are well known in the
human visual system as colour constancy (Palmer, 1999) and have recently become a
focus of interest in the computer vision community as well (Barnard et al., 2002; Gehler
et al., 2008; Gijsenij and Gevers, 2007; van de Weijer et al., 2007).
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Figure 9 Colour constancy in human vision (see online version for colours)
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Notes: Although acquired in drastically different illuminations, the extreme differences in the
pepper appearance are largely (if imperfectly) compensated by human colour constancy
mechanisms. The fruit remains ‘red’, the peduncle ‘green’, and the background ‘white’.
A more realistic example is illustrated in Figure 2.

Second, although some research has already acknowledged this, much more effort
must be placed on fusing colour with other traditional visual cues, and in particular,
with texture. Again, this last visual cue is central in the general computer vision
literature, and as is illustrated in Figure 10, it has taken a significant role in general
segmentation algorithms (e.g., Jain and Farrokhnia (1991); Malik et al. (2001); Shotton
et al. (2009); Yang et al. (2008)). It is likely that making the proper use of this cue in
a fashion tailored to images from the agricultural domain may improve target detection
performance significantly.

Figure 10 Boundaries detection by fusing brightness, colour and texture cues (reproduced
from Martin et al., 2004), (a) texture gradient measures can provide useful
information about perceptual texture boundaries without responding within coherent
texture regions (b) combined with other visual cues, boundary detection can
become robust in natural settings, and may improve performance on agricultural
images also (see online version for colours)
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5.2 Practical use of hyperspectral data

When traditional visual cues fail, machine vision for fruit harvesting robotics resort
increasingly more often to spectral response of the target and background. This approach
of enriching the sensory data acquired from the scene provides many advantages, but
also presents several challenges, some of which are technical.

For example, hyperspectral imaging necessarily provides a wealth of information.
Regardless of how much of this data is needed, the mere volume of the data poses a
challenge in storage and processing (for example, a three megapixel colour image, which
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would normally consumes 9 MB in raw format and 1.3 MB in typical JPEG, might turn
to 90 MB if acquired hyperspectrally in 10 nm spectral channels, and much larger if
non-visible light is considered also). This challenge increases further with the emergence
of real time hyperspectral cameras Cao et al. (2011) and the need to process these
images as they stream directly from the camera. What might become necessary then
are fast methods for dimension reduction often used in computer vision to handle large
descriptors and representations (Papageorgiou et al., 1998; Wang and Paliwal, 2003; Yu
and Yang, 2001).

Since currently hyperspectral imaging and processing cannot be done in real time,
when spectral response is still desired, designers of agrovision systems tend to resort
to multispectral imaging from carefully selected channels which were found to provide
good discrimination in offline tests. These selections are often ignorant of possible
variations in illumination or assume controlled illumination altogether. Hence, better
preprocessing techniques are needed to analyse hyperspectral input under variable
illumination to yield the optimal multispectral filtering that provides robust detection
rates under variable illumination. This type of problems may well be informed by work
in the remote sensing community, where hyperspectral anomaly detection is a central
problem (Manolakis et al., 2009).

5.3 The use of shape

As suggested in Section 4.4, although shape information has been leveraged in machine
vision studies for harvesting robots, most proposed solutions have been characterised
by local inference procedures while focusing on spherical shapes only (whose image
projections are circles). The challenges ahead, however, call for significantly stronger
approaches, perhaps involving new tools altogether.

Consider the typical image from a red pepper plantation/greenhouse shown in
Figure 11(a). Clearly, given the significant differences in colour between the foliage and
the fruits, the latter may be detected in a straight forward fashion, perhaps even robustly
to illumination variations. Hence, the conclusion ‘there are sweet pepper fruits in front
of the robot’ can indeed be made with most existing fruit detection algorithms.

Figure 11 (a) Red pepper under typical occlusion (b) shape fragments (c) entire shape
(see online version for colours)
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But clearly, for a harvesting robot, the type of conclusion as above is at best partial, or
more reasonably phrased-uninformative (since moving along the aisle, the robot is likely
to encounter fruits in almost every frame). A harvesting robot requires eventual physical
access and manipulation of whole fruits and therefore needs answers to questions such
as ‘how many fruits do I see in front of me’, ‘where are the fruits in the image’, and
‘what is the pose of each fruit I see’. In other words, even if one assumes perfect
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appearance-based detection using visual cues from the image, in a typical agricultural
scenario one will obtain only fragments of the targets due to occlusion from the foliage
and/or other fruits [Figure 11(b)]. In most selective agrobotic applications, the system
must bridge the gap between these fragments to whole fruits [Figure 11(c)], which in
our view is the main challenge that our research community faces today. Currently an
unsolved problem, the solution will most likely involve aspects of shape.

When it comes to using shape for grouping visual fragments into wholes, several
directions are possible. Most naturally, one may attempt shape fitting, as indeed was
used few times in the past (see Section 4.4). However, these past proposals were
relatively rare and devoted solely to circular shapes (in the image plane). The challenge
to more general shapes involves both efficient shape modelling, and shape matching,
neither of which is a trivial task.

While some attempts to consider non-spherical shapes in the agrobotics community
have been made (Morimoto et al., 2000; Paulus and Schrevens, 1999), one may get
important insights on new directions to address this problem from research in the general
computer vision literature, and in particular, from research on face modelling (e.g.,
Rein-Lien and Jain, 2001; Tao et al., 2008) or even whole body modelling (e.g., Allen
et al., 2003; Dekker et al., 1999). Perhaps more important are methods developed in
the general computer vision literature for using shape priors in segmentation of objects
under occlusions and/or geometric deformations. For example, while the use of active
contours has been very popular in object detection and segmentation (Caselles et al.,
1995; Chan and Vese, 2001; Cohen, 1991; Cohen and Kimmel, 1999; Kass et al., 1988;
Kimmel and Bruckstein, 2003; Osher et al., 2003; Xu and Prince, 1998), recent work
has integrated it with prior knowledge on the expected shape, yielding segmentation
of objects under occlusion (Chen and Radke, 2009; Fang and Chan, 2007; Foulonneau
et al., 2009; Gastaud et al., 2004), as demonstrated in Figure 12.

Figure 12 Segmentation with active contours and shape priors, implemented via one of the
classical active contour schemes Chan and Vese (2001) under the level set
framework, here we demonstrate that (a) segmentation without shape prior is prone
to fail (b) endowing it with a shape prior component (in this case, a simple
circular shape) may be able to cope not only with the shading variations but also
with the fragmentation and occlusion (see online version for colours)
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While these methods have yet to exhibit real-time performance, combining them with
progress in GPU implementations of active contour models (e.g., Rumpf and Strzodka,
2001) could allow agrovision systems to enjoy both worlds.
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5.4 Human vision inspired approaches

The use of shape in agrovision need not be limited to global shape models since
local models can provide significant constraints towards global shape inference also.
Interestingly, human vision provides ample evidence in this direction, both in terms
of fragment grouping and recognition of occluded objects, and in terms of shape
completion.

Consider the visual stimulus in Figure 13(a). Most observers would testify that
under the occluders lie rectangles rather than more bow ties, as might be implied by
the context. Here the human visual system applies basic Gestalt principles of good
continuation (Wertheimer, 1955) to complete the missing parts of the occluding contours
in a very particular way, a type of operation that has been modelled computationally
in various ways (Ben-Yosef and Ben-Shahar, 2010a,b; Horn, 1983; Kimia et al., 2003;
Mumford, 1994; Ullman, 1976) which could serve agrobotics in a meaningful and
practical manner [Figure 13(b)].

Figure 13 Boundary completion in human and machine, (a) despite the visual context, human
observers tend to see rectangles behind the occluders, rather than additional bow
ties (b) using completion principles inspired by human vision, here a computational
algorithm (Ben-Yosef and Ben-Shahar, 2010a, 2010b) completes an occluded
segment in the tomato using information about the occlusion points only
(see online version for colours)
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Consider now the classical visual stimuli in Figure 14, which constitutes collections
of fragments not much different in nature from Figure 11(b). It might be possible
(though still unlikely) that a human observer could identify instances of objects that
these fragments are part of should it be known a priori which objects he or she ought
to look for. What is clear is that without such knowledge, perception of familiar objects
is virtually impossible in this image.

However, consider now in Figure 15 the same set of fragments when the occluder
is present in the scene. Somehow, our visual system is now able to group the fragments
correctly to yield a perception of the global objects. While the processes that bridge this
gap are not fully understood yet, gaining insights from visual completion and perceptual
organisation in the human visual system may provide new opportunities for progress on
this exciting and difficult problem in agrovision.



Computer vision for fruit harvesting robots 25

Figure 14 Shape completion and recognition from visual fragments, (a) can you recognise the
shape that these fragments come from? (reproduce from Kanizsa, 1979)
(b) these fragments belong to a collection of very familiar objects. Without the
occluder, perception of these objects is nearly impossible (reproduce from Bregman, 1981)
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Figure 15 Shape completion and recognition from visual fragments, repeated from Figure 14
but this time with the occluders, perception of the objects whose fragments are
observed is easy and immediate, (a) reproduced from Kanizsa (1979) and
(b) Bregman (1981)
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5.5 Active vision

The issue of occlusions, and the perception of complete objects from partial visual
information, can be handled not only passively but in active fashion also. When a human
observer (say a worker in the greenhouse) encounters a scene like in Figure 16(a), his
first instinct would be to shift his head (and therefore, eyes) in order to obtain a different
view of the scene in which new parts of the objects are revealed (perhaps on the
expense of parts already observed in the past). This active vision approach could well be
exploited computationally for the benefit of agrovisual systems, and algorithms should
be explored to answer questions such as ‘where is my next optimal viewpoint given the
information I have so far’ or even for more basic tasks such as segmentation. To do
so effectively, one must incorporate planning, as well as inference of three dimensional
properties of the scene (Blake, 1992).



26 K. Kapach et al.

Figure 16 Active vision provides more information than static vision can, (a) the initial view
shows a fruit occluded by leaves and occluding another fruit (b) moving the
camera to a carefully selected viewpoint completely reveals both fruits (see online
version for colours)
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5.6 Going beyond 2D

As can be appreciated from the literature, the state-of-the-art in agrovision research has
focused almost exclusively on 2D image analysis (Chi and Ling, 2004; Edan et al.,
2000; Hannan and Burks, 2004; Jimenez et al., 2000a; Kong et al., 2010; Ling et al.,
2004; Liu et al., 2011; Okamoto and Lee, 2010; Zhang and Zhang, 2008). Conspired
to constrain research in this way were the sheer complexity of the problems due to the
unconstrained environment and the limited computational power that could be leveraged
with available hardware. However, with autonomous selective agriculture at the front
line of agrobotics, the new applications that emerge clearly require a significant leap in
the type of machine vision employed, and in particular, one of the main challenges to
come is 3D image understanding.

Consider again a harvesting robot operating in an apple orchard [cf., Figure 17(a)].
At the end of the processing loop awaits a harvesting manipulator, which must grasp
the physical fruit in a very specific configuration before the correct harvesting sequence
is initiated. Hence, optimal performance demands the estimation of the 3D pose of the
fruit prior to grasping, including the recovery of the peduncle and perhaps the estimation
of 3D shape of nearby rigid obstacles (like branches). Given the type of visual inputs
involved [cf., Figure 17(a)], the challenge appears nearly impossible with existing tools,
but in the spirit of Section 3.5, it may be addressed with a combination of 3D shape
modelling with estimation procedures endowed with shape priors. While the general
computer vision community has started to consider such complicated tasks in controlled
conditions (Dambreville et al., 2008; Dhome et al., 1989; Rosenhahn and Sommer, 2004;
Zerroug and Nevatia, 1995), it is up to the agrovision community to extend it to more
realistic scenarios incorporating fragmentation (due to occlusion) and spurious data.

Clearly, some instances of the problem may be easier than others (relatively
speaking). Consider the case of a harvesting robot operating in an apple orchard which
was grown under a specific dilution policy which guarantees a single fruit in a bud
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[Figure 17(a)]. For a harvesting robot it would be constructive to estimate the 3D
pose of each apple, and since apples may be modelled reasonably well as spheres or
ellipsoids, the segmentation of each apple in the 2D image (using traditional cues and
2D shape analysis, c.f., Section 3.5) and the detection of its upper or bottom part based
on appearance may lead to results of the sort illustrated in Figure 17(b). Clearly, at the
expected level of occlusions and shape variation one might encounter in a sweet pepper
plantation, the same task there may be much more difficult. One way or another, next
to robust handling of occlusions, handling of 3D shape is likely to become a major
challenge in future agrovision research for autonomous harvesting robots.

Figure 17 3D pose estimation for agrobotics, (a) a harvesting robot might need more than just
segmentation of the image regions where fruit may be (b) rather, a complete 3D
pose estimation of the sort shown here (shape model fitted to image data and axis
points along the centre of the fruit towards the peduncle) might be required for
proper grasping and picking operations, the result shown here is purely illustrative
and is not a result of any existing algorithm (see online version for colours)
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5.7 Performance evaluation

A key aspect in machine vision algorithms, especially in the applicative domain,
is the evaluation of their performance. Unfortunately, however, most papers in the
literature reviewed here neither report performance measures nor conduct a comparative
evaluation. At best, performance is reported on small sets of test sequences and virtually
never in a comparative manner to other algorithms. Furthermore, no attempt is done
to test algorithms in similar field conditions to previous work, hence rendering any
retrospective comparison using published data of little value.

Given the current mode of activity, the machine vision researchers in the
agrobotics community face two main challenges in terms of performance evaluation.
First, a common benchmark dataset must be crafted for all crops of interest under
most important environmental and growing conditions. Second, clear, subjective, and
quantitative evaluation measures must be defined, and ground truth data pertaining to
these measures must be associated with the benchmark dataset. All these can then allow
the evaluation of algorithms both relative to each other and against absolute desired
performance. For example, when it comes to fruit detection, a large set of images of
various crops, at different growing stages, different illumination conditions, and a range
of occlusion levels, should be prepared and associated with ground truth detection maps.
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These maps can then be used to evaluate algorithms for hits (true positives) and misses
(false negative), as well as for false positives and localisation and shape errors, all in a
statistically meaningful way. This is by no means a trivial task, but one that should be
given priority to facilitate more systematic research and reusable ideas.

6 Summary

Computer vision for agrobotics, and especially for selective harvesting robots, is an
exciting research domain with challenges that few other applicative disciplines can offer.
Here we reviewed more than two decades of progress on this problem, identified several
trends and the major limitations, described the main challenges ahead and proposed
possible directions to explore in order to make autonomous agrobotics a reality.
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